We applied an interdisciplinary approach to analyze the late Quaternary activity of the Sava Fault in the Slovenian Southern Alps. The Sava Fault is an active strike-slip fault, and part of the Periadriatic Fault System that accommodated the convergence of Adria and Europe. It is one of the longest faults in the Southern Alps. Using high-resolution digital elevation models from lidar and photogrammetric surveys, we were able to overcome the challenges of assessing fault activity in a region with intense surface processes, dense vegetation, and relatively low fault slip rates. By integrating remote sensing analysis, geomorphological mapping, structural geological investigations, and near-surface geophysics (electrical resistivity tomography and ground penetrating radar), we were able to find subtle geomorphological indicators, detect near-surface deformation, and show distributed surface deformation and a complex fault pattern. Using optically stimulated luminescence dating, we tentatively estimated a slip rate of 1.8 ± 0.4 mm/a for the last 27 ka, which exceeds previous estimates and suggests temporal variability in fault behavior. Our study highlights the importance of modern high-resolution remote sensing techniques and interdisciplinary approaches in detecting tectonic deformation in relatively low-strain rate environments with intense surface processes. We show that slip rates can vary significantly depending on the studied time window. This is a critical piece of information since slip rates are a key input parameter for seismic hazard studies.