It is conjectured that inflation, taking account of quantum gravity, leads to a discrete spectrum of cosmological perturbations, instead of the continuous Gaussian spectrum predicted by standard field theory in an unquantized background. Heuristic models of discrete spectra are discussed, based on an inflaton mode with self-gravity, a lattice of amplitude states, an entangled ensemble of modes, and the holographic or covariant entropy bound. Estimates are given for the discreteness observable in cosmic background anisotropy, galaxy clustering, and gravitational wave backgrounds.