2021
DOI: 10.1142/s0218196721500296
|View full text |Cite
|
Sign up to set email alerts
|

Holonomic modules for rings of invariant differential operators

Abstract: We study holonomic modules for the rings of invariant differential operators on affine commutative domains with finite Krull dimension with respect to arbitrary actions of finite groups. We prove the Bernstein inequality for these rings. Our main tool is the filter dimension introduced by Bavula. We extend the results for the invariants of the Weyl algebra with respect to the symplectic action of a finite group, for the rings of invariant differential operators on quotient varieties, and invariants of certain … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?