Abstract:We study holonomic modules for the rings of invariant differential operators on affine commutative domains with finite Krull dimension with respect to arbitrary actions of finite groups. We prove the Bernstein inequality for these rings. Our main tool is the filter dimension introduced by Bavula. We extend the results for the invariants of the Weyl algebra with respect to the symplectic action of a finite group, for the rings of invariant differential operators on quotient varieties, and invariants of certain … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.