Among mammals, numerous bioactive factors in milk vary across mothers and influence offspring outcomes. This emerging area of research has primarily investigated such dynamics within rodent biomedical models, domesticated dairy breeds, and among humans in clinical contexts. Less understood are signaling factors in the milk of non-human primates. Here, we report on multiple bioactive components in rhesus macaque (Macaca mulatta) milk and their associations with maternal and infant characteristics. Milk samples were collected from 59 macaques at multiple time points across lactation in conjunction with maternal and infant morphometrics and life-history animal records. Milk was assayed for adiponectin (APN), epidermal growth factor (EGF) and its receptor (EGF-R), and transforming growth factor beta 2 (TGF-β2). Regression models were constructed to assess the contributions of maternal factors on variation in milk bioactives, and on the relationship of this variation to infant body mass and growth. Maternal body mass, parity, social rank and infant sex were all predictive of concentrations of milk bioactives. Primiparous mothers produced milk with higher adiponectin, but lower EGF, than multiparous mothers. Heavier mothers produced milk with lower EGF and EGF-R, but higher TGF-β2. Mothers of daughters produced milk with higher TGF-β2. Mid-ranking mothers produced milk with higher mean EGF and adiponectin concentrations than low-ranking mothers. Milk EGF and EGF-R were positively associated with infant body mass and growth rate. Importantly, these signaling bioactives (APN, EGF, EGF-R, TGF-β2) were significantly correlated with nutritional values of milk. The effects of milk signals remained after controlling for the available energy in milk revealing the added physiological role of non-nutritive milk bioactives in the developing infant. Integrating analyses of energetic and other bioactive components of milk yields an important perspective for interpreting the magnitude, sources, and consequences of inter-individual variation in milk synthesis.