Identification of potential therapeutic targets and biomarkers indicative of burden of early atherosclerosis that occur prior to advancement to life-threatening unstable plaques is the key to eradication of CAD prevalence and incidences. We challenged 16 baboons with a high cholesterol, high fat diet for 2 years and evaluated early-stage atherosclerotic lesions (fatty streaks, FS, and fibrous plaques, FP) in formalin-fixed common iliac arteries (CIA). We used small RNA sequencing to identify expressed miRNAs in CIA and in baseline blood samples of the same animals. We found 412 expressed miRNAs in CIA and 356 in blood samples. Eight miRNAs (miR-7975, -486-5p, -451a, -191-5p, -148a-3p, -17-5p, -378c, and -144-3p) were differentially expressed between paired fatty streak lesion and no-lesion sites of the tissue, and 27 miRNAs (e.g., miR-92a-3p, -5001, -342-3p, miR-28-3p, -21-5p, -221-3p, 146a-5p, and -16-5p) in fibrous plaques. The expression of 14 blood miRNAs significantly correlated with extent of lesions and the number of plaques. We identified coordinately regulated miRNA-gene networks in which miR-17-5p and miR-146a-5p are central hubs and miR-5001 and miR-7975 are potentially novel miRNAs associated with early atherosclerosis. In summary, we have identified miRNAs expressed in lesions and in blood that correlate with lesion burden and are potential therapeutic targets and biomarkers. These findings are a first step in elucidating miRNA regulated molecular mechanisms that underlie early atherosclerosis in a baboon model, enabling translation of our findings to humans.