As part of our program on the biochirogenesis of homochiral peptides, we report the formation of racemic parallel (p) beta sheets composed of alternating R and S chains of up to 14-15 repeat units of the same handedness through the polymerisation of (R,S)-valine N-carboxyanhydride (NCA) crystals suspended in aqueous solutions of a primary amine as the initiator. The occurrence of such a lattice-controlled reaction accompanied by a reduction in volume implies the operation of a mechanism that differs from that of the common solid-state polymerisation in vinyl systems. The topotacticity of the reaction is explained through the operation of a multistep nonlinear process comprising lattice control coupled with an asymmetric induction in the formation of homochiral short peptides followed by their self-assembly into racemic p beta sheets, which operate as efficient templates in the ensuing process of enantioselective chain elongation at the polymer/crystal interface. The composition of the diastereoisomeric libraries of oligopeptides was determined by MALDI-TOF and MALDI-TOF-TOF MS analyses of the products obtained from monomers enantioselectively labelled with deuterium. The structure of the p beta sheets could be determined by initiating the polymerisation reaction with water-soluble esters of enantiopure alpha-amino acids or short peptides. The same reaction performed with the monomer crystals suspended in hexane yielded a complex mixture of diastereoisomeric oligopeptides, thus highlighting the indispensable role played by water in controlling the stereoselectivity of the reaction. By contrast, polymerisation of (R,S)-leucine NCA crystals, with a different packing arrangement that presumably does not endorse the formation of periodic peptide templates, yielded, both in aqueous and hexane suspensions, libraries of peptides dominated by heterochiral diastereoisomers.