Background
Autism spectrum disorder (ASD) is a clinically and genetically heterogeneous group of neurodevelopmental disorders. Despite the extensive efforts of scientists, the etiology of ASD is far from completely elucidated. In an effort to enlighten the genetic architecture of ASDs, a meta-analysis of all available genetic association studies (GAS) was conducted.
Methods
We searched in the Human Genome Epidemiology Navigator (HuGE Navigator) and PubMed for available case–control GAS of ASDs. The threshold for meta-analysis was two studies per genetic variant. The association between genotype distribution and ASDs was examined using the generalized linear odds ratio (ORG). For variants with available allele frequencies, the examined model was the allele contrast.
Results
Overall, 57 candidate genes and 128 polymorphisms were investigated in 159 articles. In total 28 genetic polymorphisms have been shown to be associated with ASDs, that are harbored in 19 genes. Statistically significant results were revealed for the variants of the following genes adenosine deaminase (ADA), bone marrow stromal cell antigen-1 (CD157/BST1), Dopamine receptor D1 (DRD1), engrailed homolog 2 (EN2), met proto-oncogene (MET), methylenetetrahydrofolate reductase (MTHFR), solute carrier family 6 member 4 (SLC6A4), Synaptosomal-associated protein, 25kDa (SNAP-25) and vitamin D receptor (VDR). In the allele contrast model of cases versus healthy controls, significant associations were observed for Adrenoceptor Alpha 1B (ADRA1B), acetyl serotonin O - methyltransferase (ASMT), complement component 4B (C4B), dopamine receptor D3 (DRD3), met proto-oncogene (MET), neuroligin 4, X-linked (NLGN4), neurexin 1 (NRXN1), oxytocin receptor (OXTR), Serine/Threonine-Protein Kinase PFTAIRE-1 (PFTK1), Reelin (RELN) and Ras-like without CAAX 2 (RIT2).
Conclusion
These significant findings provide further evidence for genetic factors’ implication in ASDs offering new perspectives in means of prevention and prognosis.