In dynamic systems, some nonlinearities generate special connection problems of non-Z2symmetric homoclinic and heteroclinic orbits. Such orbits are important for analyzing problems of global bifurcation and chaos. In this paper, a general analytical method, based on the undetermined Padé approximation method, is proposed to construct non-Z2symmetric homoclinic and heteroclinic orbits which are affected by nonlinearity factors. Geometric and symmetrical characteristics of non-Z2heteroclinic orbits are analyzed in detail. An undetermined frequency coefficient and a corresponding new analytic expression are introduced to improve the accuracy of the orbit trajectory. The proposed method shows high precision results for the Nagumo system (one single orbit); general types of non-Z2symmetric nonlinear quintic systems (orbit with one cusp); and Z2symmetric system with high-order nonlinear terms (orbit with two cusps). Finally, numerical simulations are used to verify the techniques and demonstrate the enhanced efficiency and precision of the proposed method.