2016
DOI: 10.1364/ao.55.007086
|View full text |Cite
|
Sign up to set email alerts
|

Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity

Abstract: The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
11
0
3

Year Published

2017
2017
2022
2022

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 21 publications
(14 citation statements)
references
References 18 publications
0
11
0
3
Order By: Relevance
“…[49] Gyakorlatban jelfeldolgozás szempontjából jellemzően a heterodin kvadratúra demodulációval találkozunk. A kvadratúrás elrendezés segít meghatározni a mozgás irányát és csökkenteni a lézerforrásból származó teljesítményingadozások hatását, ezzel az érzékenység javulását idézi elő [50], [51]. Emellett az alacsony frekvenciájú zaj kiszűrhető, ami a homodin technikánál nehéz.…”
Section: Lézer Doppler Vibrométerunclassified
“…[49] Gyakorlatban jelfeldolgozás szempontjából jellemzően a heterodin kvadratúra demodulációval találkozunk. A kvadratúrás elrendezés segít meghatározni a mozgás irányát és csökkenteni a lézerforrásból származó teljesítményingadozások hatását, ezzel az érzékenység javulását idézi elő [50], [51]. Emellett az alacsony frekvenciájú zaj kiszűrhető, ami a homodin technikánál nehéz.…”
Section: Lézer Doppler Vibrométerunclassified
“…Therefore, the measurement accuracy of this measurement structure will be affected by the nonlinearity error during the measurement. The formula for the analysis of the nonlinearity error is revealed in Equation 5, where I x and I y are the interferometric signals, ψ represents the ideal phase, and m is a constant [13][14][15].…”
Section: Introductionmentioning
confidence: 99%
“…However, the intensity and frequency instability of the light source dominates the measurement uncertainty of displacement-measuring interferometers. Normally, thermally-stabilized He-Ne lasers, of single or dual frequency, are used [1][2][3][4]. However, a frequency stability in the order of 10 −6 -10 −8 and an intensity stability of 0.1% are insufficient for measurements at a nanometer order of accuracy.…”
Section: Introductionmentioning
confidence: 99%