Dyster drying processes have produced a large amount of cooking soup byproducts. On this study, oyster cooking soup byproduct was concentrated and spray-dried after enzymatic hydrolysis to produce seasoning powder. Response surface methodology (RSM) was performed on the basis of single-factor studies to optimize the feeding temperature, hot air temperature, atomization pressure, and total solid content of oyster drying. Results revealed the following optimized parameters of this process: feeding temperature of 60 °C, total solid content of 30%, hot air temperature of 197 °C, and atomization pressure of 92 MPa. Under these conditions, the oyster powder yield was 63.7% ± 0.7% and the moisture content was 4.1% ± 0.1%. Dur pilot trial also obtained 63.1% yield and 4.0% moisture content. The enzyme hydrolysis of cooking soup byproduct further enhanced the antioxidant activity of the produced oyster seasoning powder to some extent. Spray drying process optimized by RSM can provide a reference for high-valued applications of oyster cooking soup byproducts.Keywords: oyster cooking soup byproduct; seasoning powder; spray drying; response surface methodology; parameters optimization.Practical Application: Hydrolytic oyster byproduct enhanced antioxidant activity was spray-dried for seasoning powder.