The reactivity of ZnII dialkyl species ZnMe2 with a cyclic(alkyl)(amino)carbene, 1‐[2,6‐bis(1‐methylethyl)phenyl]‐3,3,5,5‐tetramethyl‐2‐pyrrolidinylidene (CAAC, 1), was studied and extended to the preparation of robust CAAC‐supported ZnII Lewis acidic organocations. CAAC adduct of ZnMe2 (2), formed from a 1:1 mixture of 1 and ZnMe2, is unstable at room temperature and readily undergoes a CAAC carbene insertion into the Zn−Me bond to produce the ZnX2‐type species (CAAC‐Me)ZnMe (3), a reactivity further supported by DFT calculations. Despite its limited stability, adduct 2 was cleanly ionized to robust two‐coordinate (CAAC)ZnMe+ cation (5+) and derived into (CAAC)ZnC6F5+ (7+), both isolated as B(C6F5)4− salts, showing the ability of CAAC for the stabilization of reactive [ZnMe]+ and [ZnC6F5]+ moieties. Due to the lability of the CAAC−ZnMe2 bond, the formation of bis(CAAC) adduct (CAAC)2ZnMe+ cation (6+) was also observed and the corresponding salt [6][B(C6F5)4] was structurally characterized. As estimated from experimental and calculations data, cations 5+ and 7+ are highly Lewis acidic species and the stronger Lewis acid 7+ effectively mediates alkene, alkyne and CO2 hydrosilylation catalysis. All supporting data hints at Lewis acid type activation–functionalization processes. Despite a lower energy LUMO in 5+ and 7+, their observed reactivity is comparable to those of N‐heterocyclic carbene (NHC) analogues, in line with charge‐controlled reactions for carbene‐stabilized ZnII organocations.