The chemical structure and morphology of a set of sulfonic gel-type poly(styrene-divinylbenzene) resins (2 mol% DVB) prepared with different synthetic approaches were investigated by solid state NMR, Inverse Size Exclusion Chromatography (ISEC), FT-IR and elemental analysis to compare their swollen state structure. FT-IR and solid state NMR clearly show that the sulfonation mainly occurs in the para- position with respect the main polymer chain. Sensible proportions of sulfone bridges were found in the materials obtained with oleum and chlorosulfonic acid. With oleum, the presence of the sulfone bridges is clearly associated to a reduced ability to swell in the water medium relative to the proton exchange capacity. This highlights the cross-linking action of the sulfone bridges according to ISEC results, showing a high proportion of a dense polymer fraction in the swollen material. An even higher degree of sulfone-bridging, lower swelling ability, and a high proportion of a dense polymer fraction in the swollen material are found in the resin obtained with chlorosulfonic acid. As a matter of fact, Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP-MAS 13C-NMR), elemental analysis, and ion exchange capacity, show that oleum and chlorosulfonic acid produced resins with remarkably smaller pores and lower swollen gel volume in polar solvents, with respect to concentrated sulfuric acid.