We report transmission spectroscopy of the bloated hot Jupiter WASP-74b in the wavelength range from 4000 to 6200 Å. We observe two transit events with the Very Large Telescope FOcal Reducer and Spectrograph (VLT FORS2) and present a new method to measure the exoplanet transit depth as a function of wavelength. The new method removes the need for a reference star in correcting the spectroscopic light curves for the impact of atmospheric extinction. It also provides improved precision, compared to other techniques, reaching an average transit depth uncertainty of 211 ppm for a solar-type star of V=9.8 mag and over wavelength bins of 80 Å. The VLT transmission spectrum is analysed both individually and in combination with published data from Hubble Space Telescope (HST) and Spitzer. The spectrum is found to exhibit a mostly featureless slope and equilibrium chemistry retrievals with PLATON favour hazes in the upper atmosphere of the exoplanet. Free chemistry retrievals with AURA further support the presence of hazes. While additional constraints are possible depending on the choice of atmospheric model, they are not robust and may be influenced by residual systematics in the data sets. Our results demonstrate the utility of new techniques in the analysis of optical, ground-based spectroscopic data and can be highly complementary to follow-up observations in the infrared with JWST.