We consider the homogenization of a Poisson problem or a Stokes system in a randomly punctured domain with Dirichlet boundary conditions. We assume that the holes are spherical and have random centres and radii. We impose that the average distance between the balls is of size $$\varepsilon $$
ε
and their average radius is $$\varepsilon ^{\alpha }$$
ε
α
, $$\alpha \in (1; 3)$$
α
∈
(
1
;
3
)
. We prove that, as in the periodic case (Allaire, G., Arch. Rational Mech. Anal. 113(113):261–298, 1991), the solutions converge to the solution of Darcy’s law (or its scalar analogue in the case of Poisson). In the same spirit of (Giunti, A., Höfer, R., Ann. Inst. H. Poincare’- An. Nonl. 36(7):1829–1868, 2019; Giunti, A., Höfer, R., Velàzquez, J.J.L., Comm. PDEs 43(9):1377–1412, 2018), we work under minimal conditions on the integrability of the random radii. These ensure that the problem is well-defined but do not rule out the onset of clusters of holes.