Solid stresses can affect tumor patho-physiology in at least two ways: directly, by compressing cancer and stromal cells, and indirectly, by deforming blood and lymphatic vessels. In this work, we model the tumor mass as a growing hyperelastic material. We enforce a multiplicative decomposition of the deformation gradient to study the role of anisotropic tumor growth on the evolution and spatial distribution of stresses. Specifically, we exploit radial symmetry and analyze the response of circumferential and radial stresses to (a) degree of anisotropy, (b) geometry of the tumor mass (cylindrical versus spherical shape), and (c) different tumor types (in terms of mechanical properties). According to our results, both radial and circumferential stresses are compressive in the tumor inner regions, whereas circumferential stresses are tensile at the periphery. Furthermore, we show that the growth rate is inversely correlated with the stresses' magnitudes. These qualitative trends are consistent with experimental results. Our findings therefore elucidate the role of anisotropic growth on the tumor stress state. The potential of stress-alleviation strategies working together with anticancer therapies can result in better treatments.