Photocatalytic CO2 reduction to value‐added fuels is an appealing avenue in response to global warming and the energy crisis, but it still suffers from high energy barriers, low conversion efficiencies, and poor photostability. Herein, a novel S‐scheme SnNb2O6/CdSe–diethylenetriamine (SNO/CdSe–DET) heterojunction is designed by a microwave‐assisted solvothermal process, composed of 2D ultrathin SNO nanosheets (NSs) and amine‐modified CdSe–DET nanorods (NRs). The SNO/CdSe–DET composite without any co‐catalyst possesses a boosted performance in the solar‐driven photocatalytic conversion of CO2 to CO, and the highest CO evolution rate achieved is 36.16 μmol g−1 h−1, which is roughly 3.58 and 9.39 times greater than those of CdSe–DET and SNO under visible‐light illumination. Such a superior activity should be ascribed to the S‐scheme system, which benefits the separation of the photogenerated carriers and promotes the synergy between CdSe–DET NRs and SNO NSs by strong chemical‐bonding coordination. Meanwhile, DET can enhance CO2 adsorption/activation and precisely regulate the surface reactive sites. This innovative work provides fresh insight into the development of highly efficient S‐scheme photocatalytic heterostructures for CO2 reduction.