Purpose of review
This comprehensive review aims to provide timely and relevant insights into the current therapeutic landscape for triple-negative breast cancer (TNBC) and the molecular features underlying this subtype. It emphasizes the need for more reliable biomarkers to refine prognostication and optimize therapy, considering the aggressive nature of TNBC and its limited targeted treatment options.
Recent findings
The review explores the multidisciplinary management of early TNBC, which typically involves systemic chemotherapy, surgery, and radiotherapy. It highlights the emergence of immune checkpoint inhibitors (ICIs), poly(ADP-ribose) polymerase (PARP) inhibitors, and antibody–drug conjugates (ADCs) as promising therapeutic strategies for TNBC. Recent clinical trials investigating the use of ICIs in combination with chemotherapy and the approval of pembrolizumab and atezolizumab for PD-L1-positive metastatic TNBC are discussed. The efficacy of PARP inhibitors and ADCs in treating TNBC patients with specific genetic alterations is also highlighted.
Summary
The findings discussed in this review have significant implications for clinical practice and research in TNBC. The identification of distinct molecular subtypes through gene expression profiling has enabled a better understanding of TNBC heterogeneity and its clinical implications. This knowledge has the potential to guide treatment decisions, as different subtypes display varying responses to neoadjuvant chemotherapy. Furthermore, the review emphasizes the importance of developing reliable genomic and transcriptomic signatures as biomarkers to refine patient prognostication and optimize therapy selection in TNBC. Integrating these signatures into clinical practice may lead to more personalized treatment approaches, improving outcomes for TNBC patients.