The lipases/acyltransferases homologous to CpLIP2 of Candida parapsilosis efficiently catalyze acyltransfer reactions in lipid/water media with high water activity (a >0.9). Two new enzymes of this family, CduLAc from Candida dubliniensis and CalLAc8 from Candida albicans, were characterized. Despite 82 % sequence identity, the two enzymes have significant differences in their catalytic behaviors. In order to understand the roles played by the different subdomains of these proteins (main core, cap and C-terminal flap), chimeric enzymes were designed by rational exchange of cap and C-terminal flap, between CduLAc and CalLAc8. The results show that the cap region plays a significant role in substrate specificity; the main core was found to be the most important part of the protein for acyltransfer ability. Similar exchanges were made with CAL-A from Candida antarctica, but only the C-terminal exchange was successful. Yet, the role of this domain was not clearly elucidated, other than that it is essential for activity.