We introduce the notion of a template for discrete Morse theory. Templates provide a memory efficient approach to the computation of homological invariants (e.g., homology, persistent homology, Conley complexes) of cell complexes. We demonstrate the effectiveness of templates in two settings: first, by computing the homology of certain cubical complexes which are homotopy equivalent to S d for 1 ≤ d ≤ 20, and second, by computing Conley complexes and connection matrices for a collection of examples arising from a Conley-Morse theory on spaces of braids diagrams.