Objective
Newborn screening (NBS) has led to early diagnosis and early initiation of treatment for infantile onset Pompe Disease (IOPD). However, guidelines for management of late onset Pompe disease (LOPD) via NBS, especially with the IVS c.-32-13T>G are not clear. This IVS variant is noted in 68–90% cases with LOPD and has been presumed to result in “adult” disease in compound heterozygosity, with a few cases with earlier onset and a mild to no phenotype in homozygosity. Our study evaluates newborns with LOPD having IVS variant with a diligent multidisciplinary approach to determine if they have an early presentation.
Methods
Seven children with LOPD identified by NBS with IVS variant (3 compound heterozygous, and 4 homozygous) were evaluated with clinical, biochemical (CK, AST, ALT, and urinary Glc4), cardiac evaluation, physical therapy (PT), occupational, and speech/language therapy.
Results
All seven patients demonstrated motor involvement by age 6 months; the three patients with c.-32-13 T>G variant in compound heterozygosity had symptoms as neonates. Patients with c.-32-13 T>G variant in compound heterozygosity had more involvement with persistent hyperCKemia, elevated AST and ALT, swallowing difficulties, limb-girdle weakness, delayed motor milestones, and were initiated on ERT. The patients with c.-32-13T>G variant in homozygosity had normal laboratory parameters, and presented with very subtle yet LOPD specific signs, identified only by meticulous assessments.
Conclusion
This patient cohort represents the first carefully phenotyped cohort of infants with LOPD with the “late-onset” GAA variant c.-32-13T>G detected by NBS in the USA. It emphasizes not only the opportunity for early detection of skeletal and other muscle involvement in infants with c.-32-13T>G variant but also a high probability of overlooking or underestimating the significance of clinically present and detectable features. It can thus serve as a valuable contribution in the development of evaluation and treatment algorithms for infants with LOPD.