Alzheimer's, Parkinson’s, and Huntington’s are the most common neurodegenerative diseases that are incurable and affect the elderly population. Discovery of effective treatments for these diseases is often difficult, expensive, and serendipitous. Previous comparative studies on different model organisms have revealed that most animals share similar cellular and molecular characteristics. The meta-SNP tool includes four different integrated tools (SIFT, PANTHER, SNAP, and PhD-SNP) was used to identify non synonymous single nucleotide polymorphism (nsSNPs). Prediction of nsSNPs was conducted on three representative proteins for Alzheimer's, Parkinson’s, and Huntington’s diseases; APPl in Drosophila melanogaster, LRRK1 in Aedes aegypti, and VCPl in Tribolium castaneum. With the possibility of using insect models to investigate neurodegenerative diseases. We conclude from the protein comparative analysis between different insect models and nsSNP analyses that D. melanogaster is the best model for Alzheimer’s representing five nsSNPs of the 21 suggested mutations in the APPl protein. Aedes aegypti is the best model for Parkinson’s representing three nsSNPs in the LRRK1 protein. Tribolium castaneum is the best model for Huntington’s disease representing 13 SNPs of 37 suggested mutations in the VCPl protein. This study aimed to improve human neural health by identifying the best insect to model Alzheimer's, Parkinson’s, and Huntington’s.