2008
DOI: 10.2166/hydro.2008.018
|View full text |Cite
|
Sign up to set email alerts
|

Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules for reservoirs

Abstract: The honey-bee mating process is considered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the process of real honey-bee mating. In this paper, the honey-bee mating optimization (HBMO) algorithm is applied to extract the linear monthly operation rules of reservoirs for both irrigation and hydropower purposes. The release rules for each month are considered as a linear function of the reservoir past-month-end storage as well as current monthly inflow to the reserv… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
15
0
1

Year Published

2009
2009
2024
2024

Publication Types

Select...
5
3
1

Relationship

1
8

Authors

Journals

citations
Cited by 75 publications
(16 citation statements)
references
References 16 publications
0
15
0
1
Order By: Relevance
“…This model allows a user to quickly input model formulation, assess the correctness or appropriateness of the formulation based on the solution, quickly make minor modifications to the formulation, and repeat the process. Many researchers such as Bozorg Haddad et al (2008) and Montazar et al (2010) have applied LINGO to arrive at an optimal allocation plan of surface and ground water for various types of hydrosystems.…”
Section: Optimization Analysismentioning
confidence: 99%
“…This model allows a user to quickly input model formulation, assess the correctness or appropriateness of the formulation based on the solution, quickly make minor modifications to the formulation, and repeat the process. Many researchers such as Bozorg Haddad et al (2008) and Montazar et al (2010) have applied LINGO to arrive at an optimal allocation plan of surface and ground water for various types of hydrosystems.…”
Section: Optimization Analysismentioning
confidence: 99%
“…This model allows a user to quickly input the model formulation, assess the correctness or appropriateness of the formulation based on the solution, quickly make minor modifications to the formulation, and repeat the process. Many researchers, such as Bozorg Haddad et al (2008) and Montazar et al (2010), applied LINGO to evolve an optimal allocation plan of surface and ground water for various hydrosystem types. In another study, Ziaei et al (2012) combined LINGO and the Hydrologie Engineering Center's Reservoir System Simulation (HECResSim) models to determine monthly operating rules for the Zayandeh-Rud Reservoir system in the central part of Iran.…”
Section: Linear Programming and Lingomentioning
confidence: 99%
“…Embora os algoritmos baseados em colônias de abelhas sejam relativamente recentes, algumas aplicações têm sido propostas na literatura, tais como a solução do problema do caixeiro viajante (Lucic & Teodorovic, 2003;Wong et al, 2008), determinção de estratégias de aterrisagem em veículos aéreos não-tripulados (Chahl et al, 2004), despacho econômico de energia (Qin et al, 2004), sintonização de controladores (Azeem & Saad, 2004;Leivislö & Joensuu, 2006;Pham et al, 2007b;Serapião, 2009), escalonamento job shop (Chong et al, 2006), otimização de pesos de redes neurais (Pham et al, 2006b,c,d), otimização de máquinas de vetores suportes (Pham et al, 2007e), direção de robôs (Curkovic & Jerbic, 2007), projeto de células de manufatura (Pham et al, 2007a), projeto de junção de soldas (Pham et al, 2007d), particionamento e escalonamento (Koudil et al, 2007;Banerjee et al 2008), alocação de recursos (Quijano & Passino, 2007), problema de atribuição (Baykasoglu et al, 2007), planejamento de transporte (Wedde, et al, 2007), calibração de modelos hidrológicos (Barros et al, 2007), determinação de conformação de proteínas (Bahamish et al, 2008), codificação de DNA , problema de roteamento de veículos (Marinakis et al, 2008b) e de locações (Marinakis et al, 2008b), análise de clusters (Fathian & Amiri, 2008), extração de regras (Bozorg Haddad et al, 2008), aprendizagem de cinemática inversa de robôs (Pham et al, 2008), projeto de filtros digitais (Karaboga, 2009).…”
Section: Aplicações Dos Algoritmos De Abelhasunclassified