Abstract:This paper reports the Hopf bifurcation and self-organization pattern of a modified Brusselator model. The model is a non-standard Brusselator model, it involves the nonlinear restraint term. For the non-diffusive model, we give the types of unique positive equilibrium. It is found that the unique positive equilibrium may be focus, node, or center and we establish their stability, respectively. Especially, there exists the spatial homogeneous Hopf bifurcation when the equilibrium is a center. The first Lyapuno… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.