In this paper, we investigate an age-structured HIV infection model with logistic growth for target cell. We rewrite the model as an abstract non-densely defined Cauchy problem and obtain the condition which guarantees the existence of the unique positive steady state. By linearizing the model at steady state and analysing the associated characteristic transcendental equations, we study the local asymptotic stability of the steady state. Furthermore, by using Hopf bifurcation theorem in Liu et al., we show that Hopf bifurcation occurs at the positive steady state when bifurcating parameter crosses some critical values. Finally, we perform some numerical simulations to illustrate our results.