Thanks to unparalleled near-horizon images of the shadows of Messier 87* (M87*) and Sagittarius A* (Sgr A*) delivered by the Event Horizon Telescope (EHT), two amazing windows opened up to us for the strong-field test of the gravity theories as well as fundamental physics. Information recently published from EHT about the Sgr A*'s shadow lets us have a novel exploration of Lorentz symmetry violation (LSV) within the Standard-Model Extension (SME) framework. Despite the agreement between the shadow image of Sgr A* and the prediction of the general theory of relativity, there is still a slight difference which is expected to be fixed by taking some fundamental corrections into account. We bring up the idea that the recent inferred shadow image of Sgr A* is explicable by a minimal SME-inspired Schwarzschild metric containing the Lorentz violating (LV) terms obtained from the post-Newtonian approximation. The LV terms embedded in Schwarzschild metric are dimensionless spatial coefficients sjk associated with the field responsible for the LSV in the gravitational sector of minimal SME theory. In this way, one can control the Lorentz invariance violation in the allowed sensitivity level of the first shadow image of Sgr A*. Actually, using the bounds released within 1σ uncertainty for the shadow size of Sgr A* and whose fractional deviation from standard Schwarzschild, we set upper limits for the two different combinations of spatial diagonal coefficients of SME and time-time coefficient, as well. The best upper limit is at the 10 −3 level, consistent with the value already extracted from Gravity Probe B for the combination of temporal and spatial coefficients of SME.