As climate change advances, there is a need to examine climate conditions at scales that are ecologically relevant to species. While microclimates in forested systems have been extensively studied, microclimates in grasslands have received little attention despite the climate vulnerability of this endangered biome. We employed a novel combination of iButton temperature and humidity measurements, fine-scale spatial observations of vegetation and topography collected by UAS, and gridded mesoclimate products to model microclimate anomalies in temperate grasslands. We found that grasslands harbored diverse microclimates, and that primary productivity (as represented by NDVI), canopy height, and topography were strong spatial drivers of these anomalies. Microclimate heterogeneity is likely of ecological importance to grassland organisms seeking out climate change refugia, and thus there is a need to consider microclimate complexity in the management and conservation of grassland biodiversity.