2022
DOI: 10.48550/arxiv.2205.01993
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Horizontally quasiconvex envelope in the Heisenberg group

Abstract: This paper is concerned with a PDE-based approach to the horizontally quasiconvex (h-quasiconvex for short) envelope of a given continuous function in the Heisenberg group. We provide a characterization for upper semicontinuous, h-quasiconvex functions in terms of the viscosity subsolution to a first-order nonlocal Hamilton-Jacobi equation. We also construct the corresponding envelope of a continuous function by iterating the nonlocal operator. One important step in our arguments is to prove the uniqueness and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?