Leaf fluctuating asymmetry (FA) is widely used as an environmental stress index, including pollution. Besides FA, leaf bilateral traits can have directional asymmetry (DA) and antisymmetry (AS), which are considered hereditary. Leaf FA transitioning to DA/AS or mixed asymmetry, under air pollution, has been insufficiently investigated. This study analysed leaf asymmetry types in Tilia cordata Mill. and Betula pendula Roth under traffic air pollution over several years. In addition, the relations of such transitions to pollution, and their effect on FA-integrated index, were studied. The asymmetry types of all studied leaf traits varied with air pollution increase, as well as in control trees in different years. T. cordata most often had FA transition to DA/mixed asymmetry, while B. pendula rarely had a mixed asymmetry and FA transitions to DA/AS were observed with the same frequency. Air pollution impacted FA transitions to other asymmetry types. In most cases their frequency changed non-monotonically that corresponded to hormesis and paradoxical effects. However, FA integrated index in studied trees did not depend on change of leaf asymmetry type. Thus, DA and AS in studied plants were not exclusively hereditary. Hence, the changes of leaf asymmetry type should be considered when using leaf FA in environment assessment.