On s'intéresse à la construction d'hypersurfaces Levi-plates analytiques réelles dans les surfaces K3. On peut en construire dans les tores complexes de dimension 2 en prenant des images d'hyperplans réels. On montre que ≪ presque toute ≫ surface K3 contient une infinité d'hypersurfaces Levi-plates de ce type. La preuve repose principalement sur une construction récente due à Koike-Uehara, ainsi que sur les idées de Verbitsky sur les structures complexes ergodiques et une adaptation d'un argument dû à Ghys dans le cadre de l'étude de la topologie des feuilles génériques.