2021
DOI: 10.1007/978-3-030-74251-5_8
|View full text |Cite
|
Sign up to set email alerts
|

HORUS-NER: A Multimodal Named Entity Recognition Framework for Noisy Data

Abstract: Recent work based on DeepLearning presents state-of-the-art (SOTA) performance in the named entity recognition (NER) task. However, such models still have the performance drastically reduced in noisy data (e.g., social media, search engines), when compared to the formal domain (e.g., newswire). Thus, designing and exploring new methods and architectures is highly necessary to overcome current challenges. In this paper, we shift the focus of existing solutions to an entirely different perspective. We investigat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 20 publications
0
0
0
Order By: Relevance