Microbial communities associated with freshwater aquatic habitats and resident species are both critical to and indicative of ecosystem status and organismal health. External surfaces of turtle shells readily accumulate microbial growth and could carry representation of habitat-wide microbial diversity, since they are in regular contact with multiple elements of freshwater environments. Yet, microbial diversity residing on freshwater turtle shells is poorly understood. We applied 16S and 18S metabarcoding to characterize microbiota associated with external shell surfaces of 20 red-eared slider (Trachemys scripta) turtles collected from varied habitats in central and western Oklahoma, and ranging to southeast Iowa. Shell-associated microbial communities were highly diverse, with samples dominated by Bacteroidia and alpha-/gamma-proteobacteria, and ciliophoran alveolates. Alpha diversity was lower on turtle shells compared to shallow-water-associated environmental samples, likely resulting from basking-drying behavior and seasonal scute shedding, while alpha diversity was higher on carapace than plastron surfaces. Beta diversity of turtle shells was similarly differentiated from environmental samples, although sampling site was consistently a significant factor. Deinococcus-Thermus bacteria and ciliophoran alveolates were recovered with significantly higher abundance on turtle shells versus environmental samples, while bacterial taxa known to include human-pathogenic species were variably more abundant between shell and environmental samples. Microbial communities from a single, shared-site collection of the ecologically similar river cooter (P. concinna) largely overlapped with those of T. scripta. These data add to a foundation for further characterization of turtle shell microbial communities across species and habitats, with implications for freshwater habitat assessment, microbial ecology and wildlife conservation efforts.