In conditions of severe gut dysbiosis, there is a risk of developing diseases of the host organism in general and of the brain in particular, as evidenced by a growing number of studies. This chapter focuses on several groups of low-molecular-weight compounds that originate primarily from the gut microbiota. It discusses the results of experimental and clinical studies on the effect of microbial metabolites (such as short-chain fatty acids, phenolic metabolites of tyrosine, indolic metabolites of tryptophan, trimethylamines) on the brain. Several studies have proven that the microbial metabolite profiles in the gut and serum are interlinked and reflect a disruption of the gut microbial community. Using 16S ribosomal RNA gene sequencing, it was found that the gut microbiota of patients with positive or negative dynamics of neurological status differ taxonomically. The chapter also presents data obtained from animal germ-free (GF) models. Many researchers would like to consider the gut microbiota as a new therapeutic target, including for the treatment of brain diseases, stroke prevention, reduction of neuroinflammation, and more successful neurorehabilitation of patients.