IP 3 increase and de novo synthesis of scoparone are produced in the hypersensitive response (HR) of lemon seedlings against the fungus Alternaria alternata. To elucidate whether a G-protein and/or a protein tyrosine kinase (PTK) are involved in signal transduction leading to the production of such a defensive response, we studied the HR in this plant system after treatment with G-protein activators alone and PTK inhibitors in the presence of fungal conidia. No changes in the level of IP 3 were detected in response to the treatment with the G-protein activators cholera toxin or mastoparan, although the HR was observed in response to these compounds as determined by the scoparone synthesis. On the contrary, the PTK inhibitors lavendustin A and 2,5-dihidroxy methyl cinnamate (DHMC) not only prevented the IP 3 changes observed in response to the fungal inoculation of lemon seedlings but also blocked the development of the HR. These results suggest that the IP 3 changes observed in response to A. alternata require a PTK activity and are the result of a G-protein independent Phospholipase C activity, even though the activation of a G-protein can also lead to the development of a HR. Therefore, it appears that more than one signaling pathway may be activated for the development of HR in lemon seedlings: one involving a G-protein and the other involving a PTK-dependent PLC.