Viruses evolve extremely quickly, so reliable methods for viral host prediction are necessary to safeguard biosecurity and biosafety alike. Novel human-infecting viruses are difficult to detect with standard bioinformatics workflows. Here, we predict whether a virus can infect humans directly from next-generation sequencing reads. We show that deep neural architectures significantly outperform both shallow machine learning and standard, homology-based algorithms, cutting the error rates in half and generalizing to taxonomic units distant from those presented during training. Further, we develop a suite of interpretability tools and show that it can be applied also to other models beyond the host prediction task. We propose a new approach for convolutional filter visualization to disentangle the information content of each nucleotide from its contribution to the final classification decision. Nucleotide-resolution maps of the learned associations between pathogen genomes and the infectious phenotype can be used to detect regions of interest in novel agents, for example, the SARS-CoV-2 coronavirus, unknown before it caused a COVID-19 pandemic in 2020. All methods presented here are implemented as easy-to-install packages not only enabling analysis of NGS datasets without requiring any deep learning skills, but also allowing advanced users to easily train and explain new models for genomics.