Entangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption, allowing continuous wave laser diodes to drive ultrafast time-resolved spectroscopy and nonlinear processes. Despite a range of theoretical studies and experimental measurements, inconsistencies persist about the value of the entanglement enhanced interaction cross section. A spectrometer is constructed that can temporally and spectrally characterize the entangled photon state before, during, and after any potential two-photon excitation event. For the molecule Rhodamine 6G, which has a virtual state pathway, any entangled two-photon interaction is found to be equal to or lower than classical, single photon scattering events. This result can account for the discrepancies between the wide variety of entangled two-photon absorption cross sections reported from different measurement techniques. The reported instrumentation can unambiguously separate classical and entangled effects and therefore is of importance for the growing field of nonlinear and multiphoton entangled spectroscopy.TOC GRAPHICS KEYWORDS (Word Style "BG_Keywords"). Entangled two-photon absorption, Rhodamine 6G, entangled light matter interactions, virtual state pathways, off-resonant scattering