Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248 nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low aspect ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF laser based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150 MW) with a rep-rate system that has a per pulse laser energy well below 1 megajoule.