<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ H: = -\Delta+V $\end{document}</tex-math></inline-formula> be a nonnegative Schrödinger operator on <inline-formula><tex-math id="M2">\begin{document}$ L^2({\bf R}^N) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ N\ge 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ V $\end{document}</tex-math></inline-formula> is a radially symmetric inverse square potential. Let <inline-formula><tex-math id="M5">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula> be the operator norm of <inline-formula><tex-math id="M6">\begin{document}$ \nabla^\alpha e^{-tH} $\end{document}</tex-math></inline-formula> from the Lorentz space <inline-formula><tex-math id="M7">\begin{document}$ L^{p, \sigma}({\bf R}^N) $\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id="M8">\begin{document}$ L^{q, \theta}({\bf R}^N) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M9">\begin{document}$ \alpha\in\{0, 1, 2, \dots\} $\end{document}</tex-math></inline-formula>. We establish both of upper and lower decay estimates of <inline-formula><tex-math id="M10">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula> and study sharp decay estimates of <inline-formula><tex-math id="M11">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula>. Furthermore, we characterize the Laplace operator <inline-formula><tex-math id="M12">\begin{document}$ -\Delta $\end{document}</tex-math></inline-formula> from the view point of the decay of <inline-formula><tex-math id="M13">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula>.</p>