Severe hot tearing has been observed during DC casting of modified AA3000 alloys with additions of Cu, Ti, and Zr, although these alloys are regarded as rather easy to cast. Extensive studies have been performed on both synthetic and industrial AA2000, AA6000, and AA7000 alloys, but less data are available for AA3000 alloys. This work was thus initiated to investigate the hot tearing susceptibility of AA3000 alloys with varying alloy element content using constrained rod casting molds. The results showed that the Cu and Fe content have a major impact on hot tearing resistance, while the effects of Zr and Ti are minor. Cu in a range from 0.3 to 1.2 wt pct significantly increased the hot tearing tendency. This is due to the existence of high eutectic fractions at low temperatures, as well as porosity formation associated with bad feeding at the end of solidification. A strong cracking tendency was observed below an Fe content 0.2 wt pct owing to decreased precipitation of the Al 6 (Mn, Fe) phase. It was found that primary Al 6 (Mn, Fe) phases lead to early bridging between the grains, which reinforces the alloy during the vulnerable temperature range for hot tearing. Zr and Ti additions weakly enhanced or reduced hot tearing severity, respectively.