2024
DOI: 10.3390/app14062285
|View full text |Cite
|
Sign up to set email alerts
|

Hourly Long-Term Traffic Volume Prediction with Meteorological Information Using Graph Convolutional Networks

Sangung Park,
Mugeun Kim,
Jooyoung Kim

Abstract: Hourly traffic volume prediction is now emerging to mitigate and respond to hourly-level traffic congestion augmented by deep learning techniques. Incorporating meteorological data into the forecasting of hourly traffic volumes substantively improves the precision of long-term traffic forecasts. Nonetheless, integrating weather data into traffic prediction models is challenging due to the complex interplay between traffic flow, time-based patterns, and meteorological conditions. This paper proposes a graph con… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 24 publications
0
0
0
Order By: Relevance