2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) 2016
DOI: 10.1109/icmla.2016.0078
|View full text |Cite
|
Sign up to set email alerts
|

Hourly Solar Irradiance Forecasting Based on Machine Learning Models

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
8
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 31 publications
(10 citation statements)
references
References 17 publications
0
8
0
2
Order By: Relevance
“…Physics-based models, including Numerical Weather Prediction (NWP) models, use satellite and ground-based sky image data to evaluate cloud formations and predict solar irradiance [11,12].While physics-based models explain causality through closed-form equations or numerical simulations, the solutions are in some cases limited with respect to their computational tractability [1]. On the other hand, statistics-based models, including Regression [13], Exponential Smoothing Models [14], and variants of the Autoregressive Integrated Moving Average (ARIMA) model [4,13,15], have been implemented for solar irradiance forecasting over shorter horizons. These models use statistical analysis in order to map inputs to the forecast variable; however, considering the non-stationary nature of solar irradiance data, statistical models fail to accurately predict sudden changes in solar irradiance [13].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Physics-based models, including Numerical Weather Prediction (NWP) models, use satellite and ground-based sky image data to evaluate cloud formations and predict solar irradiance [11,12].While physics-based models explain causality through closed-form equations or numerical simulations, the solutions are in some cases limited with respect to their computational tractability [1]. On the other hand, statistics-based models, including Regression [13], Exponential Smoothing Models [14], and variants of the Autoregressive Integrated Moving Average (ARIMA) model [4,13,15], have been implemented for solar irradiance forecasting over shorter horizons. These models use statistical analysis in order to map inputs to the forecast variable; however, considering the non-stationary nature of solar irradiance data, statistical models fail to accurately predict sudden changes in solar irradiance [13].…”
Section: Introductionmentioning
confidence: 99%
“…Machine learning models including Artificial Neural Networks have the ability to train the model using historical solar irradiance data, exogenous meteorological data, or both to capture the stochasticity of solar irradiance data. Melzi et al [15] compared the performance of several machine learning techniques to statistical models using previous hours of solar irradiance and previous days containing the same number of daylight hours in order to forecast hourly solar irradiance. They found that combining exogenous variables to solar irradiance data improved model performance.…”
Section: Introductionmentioning
confidence: 99%
“…Солнце является неисчерпаемым источником энергии, но приходящая на подстилающую поверхность энергия солнечного излучения (СИ) обладает большой временной изменчивостью (суточной и сезонной) и зависит от места локализации станций и метеосостояния атмосферы [5,6]. В свете выше изложенного для оптимизации конструкции солнечных тепловых станций (СТС) и солнечных электрических станций (СЭС) требуется знание зависимостей световой энергии солнечного излучения [7,8], поступающего на световоспринимающую поверхность котельной установки, в зависимости от метеосостояния атмосферы по месту дислокации станции и времени работы станции [9][10][11]. В настоящей работе рассмотрено получение необходимых для разработки конструкций СТС и СЭС исходных данных методом численного моделирования приходящих потоков СИ в спектральной области их функционирования.…”
Section: Introductionunclassified
“…A detailed review study on wind speed and solar irradiance forecasting based on ensemble techniques was presented in [52]. The seasonal strategy was reported based on the auto regressive integrated moving average (ARIMA) method for irradiance forecasting [53]. The applicability and limitations of machine learning models for solar irradiance forecasting for the day ahead and a few hours ahead prediction scales were reported [54].…”
Section: Introductionmentioning
confidence: 99%