2017
DOI: 10.1007/s11156-017-0652-y
|View full text |Cite
|
Sign up to set email alerts
|

How accurate are modern Value-at-Risk estimators derived from extreme value theory?

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 150 publications
(191 reference statements)
0
7
0
Order By: Relevance
“…Additional distributions, based on and generalizing normal transformations, are contained in the distribution system of Johnson (1949), which has been compared in detail to the g‐and‐h distribution in Mac Gillivray (1992) and applied by Mögel and Auer (2018) to model the VaR of London Bullion Market gold spot returns. In this system, the associated cdf for xdouble-struckR is F(x)=normalΦ)(γ+δg)(xξλ, where γ and δ>0 determine the shape of the distribution, ξ is a location, and λ>0 a scale factor.…”
Section: Methodsmentioning
confidence: 99%
“…Additional distributions, based on and generalizing normal transformations, are contained in the distribution system of Johnson (1949), which has been compared in detail to the g‐and‐h distribution in Mac Gillivray (1992) and applied by Mögel and Auer (2018) to model the VaR of London Bullion Market gold spot returns. In this system, the associated cdf for xdouble-struckR is F(x)=normalΦ)(γ+δg)(xξλ, where γ and δ>0 determine the shape of the distribution, ξ is a location, and λ>0 a scale factor.…”
Section: Methodsmentioning
confidence: 99%
“…Because the ES focuses on extreme losses, extreme value theory is a particularly interesting tool for the derivation of new ES estimators. So far, most research in this field has focused on VaR estimation (Brooks et al , 2005; Mögel and Auer, 2018) but can easily be extended to ES estimation (McNeil and Frey, 2000; Martins-Filho and Yao, 2006; Martins-Filho et al , 2018). Motivated by its popularity and persuasive backtest performance for high confidence levels (Gençay and Selçuk, 2004), we let the peak-over-threshold (POT) method represent the class of estimators based on extreme value theory.…”
Section: Estimators Of Expected Shortfallmentioning
confidence: 99%
“…The implementation of the VaR models and their performance were considered by many authors, both from the theoretical and practical point of view (Kang & Li, 2018;Mogel & Auer, 2018;Trottier et al, 2018;Bee et al, 2017;D'Amico & Petroni, 2017;Djakovic & Andjelic, 2017;Goel et al, 2017;Chen & Chiang, 2016;Kambouroudis et al, 2016;Lee, 2016;Wied et al, 2016;Zhou et al, 2016). The evolution of risk management is induced by financial crises (Adrian, 2017).…”
Section: Literature Reviewmentioning
confidence: 99%