2023
DOI: 10.3905/jpm.2023.1.460
|View full text |Cite
|
Sign up to set email alerts
|

How Can Machine Learning Advance Quantitative Asset Management?

Abstract: The emerging literature suggests that machine learning (ML) is beneficial in many asset pricing applications because of its ability to detect and exploit nonlinearities and interaction effects that tend to go unnoticed with simpler modelling approaches. In this paper, we discuss the promises and pitfalls of applying machine learning to asset management, by reviewing the existing ML literature from the perspective of a prudent practitioner. The focus is on the methodological design choices that can critically a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 49 publications
0
0
0
Order By: Relevance