The time evolution of evanescent modes in Pendry's perfect lens proposal for ideally lossless and homogeneous, left-handed materials is analyzed. We show that time development of subwavelength resolution exhibits universal features, independent of model details. This is due to the unavoidable near degeneracy of surface electromagnetic modes in the deep subwavelength region. By means of a mechanical analog, it is shown that an intrinsic time scale (missed in stationary studies) has to be associated with any desired lateral resolution. A time-dependent cutoff length emerges, removing the problem of divergences claimed to invalidate Pendry's proposal.