The novel coronavirus disease 2019 (COVID‐19) remains a global health emergency, and understanding the interactions between the virus and host immune responses is crucial to preventing its lethal effects. The expansion of myeloid‐derived suppressor cells (MDSCs) in COVID‐19, thereby suppressing immune responses, has been described as responsible for the severity of the disease, but the correlation between MDSC subsets and COVID‐19 severity remains elusive. Therefore, we classified patients according to clinical and laboratory findings—aiming to investigate the relationship between MDSC subsets and laboratory findings such as high C‐reactive protein, ferritin and lactate dehydrogenase levels, which indicate the severity of the disease. Forty‐one patients with COVID‐19 (26 mild and 15 severe; mean age of 49.7 ± 15 years) and 26 healthy controls were included in this study. MDSCs were grouped into two major subsets—polymorphonuclear MDSCs (PMN‐MDSCs) and monocytic MDSCs—by flow cytometric immunophenotyping, and PMN‐MDSCs were defined as mature and immature, according to CD16 expressions, for the first time in COVID‐19. Total MDSCs, PMN‐MDSCs, mature PMN‐MDSCs and monocytic MDSCs were significantly higher in patients with COVID‐19 compared with the healthy controls (
P
< .05). Only PMN‐MDSCs and their immature PMN‐MDSC subsets were higher in the severe subgroup than in the mild subgroup. In addition, a significant correlation was found between C‐reactive protein, ferritin and lactate dehydrogenase levels and MDSCs in patients with COVID‐19. These findings suggest that MDSCs play a role in the pathogenesis of COVID‐19, while PMN‐MDSCs, especially immature PMN‐MDSCs, are associated with the severity of the disease.