The recent popularity of trail running and the use of portable sensors capable of measuring many performance results have led to the growth of new fields in sports science experimentation. Trail running is a challenging sport; it usually involves running uphill, which is physically demanding and therefore requires adaptation to the running style. The main objectives of this study were initially to use three “low-cost” sensors. These low-cost sensors can be acquired by most sports practitioners or trainers. In the second step, measurements were taken in ecological conditions orderly to expose the runners to a real trail course. Furthermore, to combine the collected data to analyze the most efficient running techniques according to the typology of the terrain were taken, as well on the whole trail circuit of less than 10km. The three sensors used were (i) a Stryd sensor (Stryd Inc. Boulder CO, USA) based on an inertial measurement unit (IMU), 6 axes (3-axis gyroscope, 3-axis accelerometer) fixed on the top of the runner’s shoe, (ii) a Global Positioning System (GPS) watch and (iii) a heart belt. Twenty-eight trail runners (25 men, 3 women: average age 36 ± 8 years; height: 175.4 ± 7.2 cm; weight: 68.7 ± 8.7 kg) of different levels completed in a single race over a 8.5 km course with 490 m of positive elevation gain. This was performed with different types of terrain uphill (UH), downhill (DH), and road sections (R) at their competitive race pace. On these sections of the course, cadence (SF), step length (SL), ground contact time (GCT), flight time (FT), vertical oscillation (VO), leg stiffness (Kleg), and power (P) were measured with the Stryd. Heart rate, speed, ascent, and descent speed were measured by the heart rate belt and the GPS watch. This study showed that on a ≤10 km trail course the criteria for obtaining a better time on the loop, determined in the test, was consistency in the effort. In a high percentage of climbs (>30%), two running techniques stand out: (i) maintaining a high SF and a short SL and (ii) decreasing the SF but increasing the SL. In addition, it has been shown that in steep (>28%) and technical descents, the average SF of the runners was higher. This happened when their SL was shorter in lower steep and technically challenging descents.