Despite the potential of diversification strategies to achieve sustainability, diversified systems such as agroforestry are still not widely implemented by farmers, which indicates the need to further understand and adequately assess the impacts of diversification to inform the design of complex systems. In this paper, we conduct a systematic literature review focused on agroforestry coffee systems, to assess (i) how current methods and indicators are used to quantify the impact of diversification on multiple dimensions of system sustainability, and (ii) to assess the impact of diversification through coffee agroforestry on multiple dimensions of sustainability. Our analysis was based on 215 selected papers and all the indicators identified could be classified in one of the sustainability dimensions proposed in our framework: ecosystem services (57.2%), biodiversity (35.6%), input use (4%), socio-economic sustainability (2.7%) and resilience capacity (0.5%). Despite the broad scope of the indicators, individual studies were found to often lack interdisciplinarity and a systemic view on agroecosystems. Besides, not only were there few studies that included the impacts of diversification on input use, socio-economic sustainability and resilience capacity, but specific biodiversity attributes (e.g. functional diversity, landscape diversity) and ecosystem services (e.g. soil biological quality, water regulation, pollination) were generally underreported. The impact of diversification was more positive than negative in all dimensions of sustainability, with the exception of crop productivity. Yet, diversified systems are associated with reduced costs and high yields can still be achieved in diversified systems with appropriate agricultural management (e.g. adequate number and type of shade trees). Key to reaping the benefits of diversified systems is that the diversity of elements is carefully integrated considering the impact on multiple dimensions of system sustainability. A better understanding of synergies and trade-offs remains crucial for the customized design of diverse and sustainable systems for a variety of geo-climatic conditions.