Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Alzheimer's disease (AD) is an age‐related neurodegenerative disorder characterised by cognitive dysfunction, memory loss and mood changes. Hippocampal neurogenesis has been suggested to play a role in learning and memory. Neurokinin 3 receptor (NK3R) has been shown to be prevalent in the hippocampus region. The aim of the project was to investigate the role of hippocampal neurogenesis in the promnestic effects of NK3R agonist administration in an amyloid beta‐induced AD rat model. Wistar albino rats were divided into control, Alzheimer, NK3R agonist and Alzheimer + NK3R agonist groups. The open field (OF) test and Morris water maze (MWM) test were performed for locomotor activity and memory analysis. Peptide gene expression levels (Nestin, DCX, Neuritin, MASH1, Neun, BDNF) were analysed by quantitative reverse transcription polymerase chain reaction (RT‐PCR). In the OF test, the group–time relationship was found to be statistically different in the parameters of distance travelled and percentage of movement (p < 0.05). In MWM, the time to reach the platform and the time spent in the target quadrant were statistically significant between the groups (p < 0.05). Statistically significant differences were observed in gene expression levels (Nestin, DCX, Neuritin, MASH1) in the hippocampal tissue of rats between the groups (p < 0.05). NK3 receptor agonism favourably affected hippocampal neurogenesis in AD model rats. It was concluded that NK3 receptor agonism in the hippocampus, which is the first affected region in the physiopathology of AD, may be effective in both the formation of neural precursor cells and the reduction of neuronal degeneration. The positive effect of NK3R on cognitive functions may be mediated by hippocampal neurogenesis.
Alzheimer's disease (AD) is an age‐related neurodegenerative disorder characterised by cognitive dysfunction, memory loss and mood changes. Hippocampal neurogenesis has been suggested to play a role in learning and memory. Neurokinin 3 receptor (NK3R) has been shown to be prevalent in the hippocampus region. The aim of the project was to investigate the role of hippocampal neurogenesis in the promnestic effects of NK3R agonist administration in an amyloid beta‐induced AD rat model. Wistar albino rats were divided into control, Alzheimer, NK3R agonist and Alzheimer + NK3R agonist groups. The open field (OF) test and Morris water maze (MWM) test were performed for locomotor activity and memory analysis. Peptide gene expression levels (Nestin, DCX, Neuritin, MASH1, Neun, BDNF) were analysed by quantitative reverse transcription polymerase chain reaction (RT‐PCR). In the OF test, the group–time relationship was found to be statistically different in the parameters of distance travelled and percentage of movement (p < 0.05). In MWM, the time to reach the platform and the time spent in the target quadrant were statistically significant between the groups (p < 0.05). Statistically significant differences were observed in gene expression levels (Nestin, DCX, Neuritin, MASH1) in the hippocampal tissue of rats between the groups (p < 0.05). NK3 receptor agonism favourably affected hippocampal neurogenesis in AD model rats. It was concluded that NK3 receptor agonism in the hippocampus, which is the first affected region in the physiopathology of AD, may be effective in both the formation of neural precursor cells and the reduction of neuronal degeneration. The positive effect of NK3R on cognitive functions may be mediated by hippocampal neurogenesis.
IntroductionAlzheimer’s disease (AD) prevalence and severity are associated with increased age, female sex, and apolipoprotein E4 (APOE4) genotype. Although estrogen therapy (ET) effectively reduces symptoms of menopause including hot flashes and anxiety, and can reduce dementia risk, it is associated with increased risks of breast and uterine cancer due to estrogen receptor alpha (ERβ)-mediated increases in cancer cell proliferation. Because ERβ activation reduces this cell proliferation, selective targeting of ERβ may provide a safer method of improving memory and reducing hot flashes in menopausal women, including those with AD. APOE genotype influences the response to ET, although it is unknown whether effects of ERβ activation vary by genotype.MethodsHere, we tested the ability of long-term oral treatment with a novel highly selective ERβ agonist, EGX358, to enhance object recognition and spatial recognition memory, reduce drug-induced hot flashes, and influence anxiety-like behaviors in female mice expressing 5 familial AD mutations (5xFAD-Tg) and human APOE3 (E3FAD) or APOE3 and APOE4 (E3/4FAD). Mice were ovariectomized at 5 months of age and were then treated orally with vehicle (DMSO) or EGX358 (10 mg/kg/day) via hydrogel for 8 weeks. Spatial and object recognition memory were tested in object placement (OP) and object recognition (OR) tasks, respectively, and anxiety-like behaviors were tested in the open field (OF) and elevated plus maze (EPM). Hot flash-like symptoms (change in tail skin temperature) were measured following injection of the neurokinin receptor agonist senktide (0.5 mg/kg).ResultsEGX358 enhanced object recognition memory in E3FAD and E3/4FAD mice but did not affect spatial recognition memory. EGX358 also reduced senktide-induced tail temperature elevations in E3FAD, but not E3/4FAD, females. EGX358 did not influence anxiety-like behaviors or body weight.DiscussionThese data indicate that highly selective ERβ agonism can facilitate object recognition memory in both APOE3 homozygotes and APOE3/4 heterozygotes, but only reduce the magnitude of a drug-induced hot flash in APOE3 homozygotes, suggesting that APOE4 genotype may blunt the beneficial effects of ET on hot flashes. Collectively, these data suggest a potentially beneficial effect of selective ERβ agonism for memory and hot flashes in females with AD-like pathology, but that APOE genotype plays an important role in responsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.