SummaryMost ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural and functional characteristics, this bacterial protein is classified as a member of the P-glycoprotein cluster of the ABC transporter superfamily. LmrA can even substitute for P-glycoprotein in human lung fibroblast cells, suggesting that this type of transporter is conserved from bacteria to man. The functional similarity between bacterial LmrA and human P-glycoprotein is further exemplified by their currently known spectrum of substrates, consisting mainly of hydrophobic cationic compounds. In addition, LmrA was found to confer resistance to eight classes of broad-spectrum antibiotics, and homologs of LmrA have been found in pathogenic bacteria, supporting the clinical and academic value of studying this bacterial protein. Current studies are focused on unraveling the mechanism by which ABC multidrug transporters, such as LmrA, couple the hydrolysis of ATP to the translocation of drugs across the membrane. Recent evidence indicates that LmrA mediates drug transport by an alternating two-site transport mechanism. IUBMB Life, 53: 213-218, 2002