Our recent animal and human studies revealed that chronic hyponatremia is a previously unrecognized cause of osteoporosis that is associated with increased osteoclast numbers in a rat model of the human disease of the syndrome of inappropriate antidiuretic hormone secretion (SIADH). We used cellular and molecular approaches to demonstrate that sustained low extracellular sodium ion concentrations ( Hyponatremia, defined as serum sodium ion concentration ([Na ϩ ]) less than 135 mmol/liter, is a frequently encountered electrolyte abnormality in patients. Chronic hyponatremia is an especially common disorder in elderly people, often due to the dysregulation of hypothalamic osmoregulatory mechanisms, leading to the syndrome of inappropriate antidiuretic hormone secretion (SIADH).2 Hyponatremia may also arise from chronic heart failure or cirrhosis and from treatment with a large number of drugs, including diuretics and selective serotonin reuptake inhibitors. The estimated prevalence of chronic hyponatremia in the United States is in the range of 3.2-6.1 million persons annually, 75-80% of whom are without obvious neurological symptoms. Although chronic hyponatremia is often considered to be "asymptomatic," recent reports have shown its adverse effects, namely impaired gait stability and neurocognitive functions and, therefore, a greater risk of falls and fractures. In one recent case-controlled study of asymptomatic chronic hyponatremic patients, even mild hyponatremia was associated with a 67-fold increased odds ratio for falling compared with normonatremic controls. Even more alarming, a recent study from Belgium found that mild asymptomatic hyponatremia was associated with bone fractures in ambulatory elderly subjects (adjusted odds ratio of 4.16, 95% confidence interval: 2.24 -7.71) (1), and the incidence of hyponatremia in patients aged 65 or older with skeletal fractures was more than double that of patients with no fracture (9.1 and 4.1%, respectively; p ϭ 0.007) (2). Recent studies from our laboratory have indicated that hyponatremia is also associated with osteoporosis due to increased osteoclastic bone resorption in a rat model of SIADH (3). Histomorphometric analysis indicated that osteoclast number was increased 5-10-fold in excised femurs, tibia, and spine from hyponatremic rats, and analysis of blood samples revealed no significant metabolic or hormonal change that could account for the increased osteoclastic bone resorption (3). Early studies of radionucleotide distribution indicated that approximately one-third of the body's sodium is stored in the bone matrix along with calcium and phosphorus and is released during osteoclastic resorption (4). A more recent study has also shown that large amounts of sodium are stored in an osmotically inactive compartment in the bones of dogs and are released from this store during prolonged dietary sodium deprivation (5). The primary components of bone matrix are removed by osteoclasts first by demineralization of the inorganic mineral through acidification of the...